458 科学,正式启航(3/6)
常重大的突破。
他没必要把工作做的太过细致,主要是起到一个类似于抛砖引玉的效果,吸引其他科研工作者的关注。
要是能吸引到一些研究方向摇摆不定的课题组,投入有机光伏的怀抱就更好了。
毕竟,许秋一个人能耐再大,也不可能把有机光伏领域所有的活都干完,还是要靠其他工作者共同完成。
进入这个行业的人越多,这个领域发展的也就越快越好。
就像这次选择叠层器件顶电池材料时,自己课题组的材料就有些不够用了,需要找一些外援材料。
确定了文章格式后,许秋本来打算下载几篇最新“报告”格式的《科学》论文当做模板的。
结果发现下载不了,只能预览标题、文章作者、摘要等基础的信息,如果要阅读全文,或者下载文献全文pdf,就需要付费了。
他这才想到学校没有购买《科学》的电子版资源。
不过,很多期刊的电子版收费是有期限的。
也就是说文章发表后经过一定时间,会自动转换为开源文章,这个期限有的可能是一年,有的可能是两年。
因此,许秋找了找往期的《科学》论文,从中下载了几篇已经开源的“报告”格式论文,开始对照着制作模板。
大体上和之前acs、rsc、wiley旗下期刊的格式差不多,改变的主要是一些细节:
参考文献本身的引用格式也和其他期刊有所不同,年份需要加圆括号,放在页码的后面。
大致花费了一个小时,许秋终于完成了文章撰写前的准备工作。
接下来,就是构筑《科学》论文的大致框架。
三天后。
周三下午,许秋完成了这篇《科学》论文的大致框架。
正文中,他一共规划了三张图片。
第一张图片的主题是“基于a.5g标准光照条件下,对二终端法叠层有机太阳能电池器件理论效率的半经验分析”。
这张图片属于叠层器件文章中较为常规的配图,在平常单结器件的文章中并不多见。
具体细分为a、b、c、d四张小图。
其中,a图是核心。
许秋构建了一个三维立体坐标系,xyz三个坐标分别为:
x,外量子效率eqe,从65到85;
y,顶电池的光吸收边λo,近似于顶电池材料可以吸收光波长的最大值,从900到1200纳米;
z,器件的理论光电转换效率pce,从12到30。
此外,还有第四个变量,即每个子电池的能量损失eloss,分为0.4、0.5、0.6、0.7、0.8电子伏特五个档次。
同时,假定填充因子ff恒定为0.75。
经过计算,得到在不同子电池能量损失下,光电转换效率随外量子效率和顶电池的光吸收边变化的曲面图像。
因为能量损失有五个档次,所以对应的三维立体坐标系中就有五个曲面。
许秋为了表述直观,还给五个曲面染了色,从蓝到红分别表示光电转换效率逐渐增大。
这张图片看起来比较高端,但其实背后的计算过程并不复杂。
顶电池的光吸收边,可以通过公式换算出有效层材料的禁带宽度,禁带宽度再减去假定的能量损失,就得到了开路电压。
禁带宽度已知,外量子效率已知,可以通过积分计算得到短路电流密度。
最后,填充因子是给定的0.75。
三者相乘,就得到了最终的光电转换效率。
理论预测的结果还是比较美好的。
在光吸收边为1100纳米,外量子效率75,填充因子0.75,能量损失0.6电子伏特的条件下,有机光伏叠层器件的效率可以达到20!
然而,理想很丰满,现实有点短。
现实的情况是,每个值都比理想情况下差5左右。
比如,光吸收边实际上只有1000纳米,外量子效率只有70,填充因子只有0.70,能量损失是0.65电子伏特。
从而导致,现实里的结果差不多就是200.950.950.950.9516.3。
而现在都还做不到16.3呢。
不过经过许秋团队的努力,已经非常的接近这个数值了。
剩下的b、c、d三张图片,就是把三维坐标系之下立体的a图,变为二维坐标下的平面图。
也就是分别固定外量子效率、顶电池的光吸收边,以及每个子电池的能量损失,三个变量其中的一个,考察光电转换效率随另外两个变量变化的二维图谱。
其中,光电转换效率同样通过之前的蓝红颜色进行表示,并绘制出等效率线。
值得注意的是,在这些半经验分析图片中,许秋都把填充因子恒定为0.75。
一方面,是因为填充因子相对比较特殊。
它虽然是变量,但影响它的因素非常多,不是很好优化和界定,不像短路电流密度和开路电压,可以认为直接和材料禁带宽度相关。
理论上讲,填充因子主要受到太阳能电池器件本身的影响,最终得到的器件串联电阻越大,并联电阻越小,填充因子就越小。
但实际上,不论是串联电阻还是并联电阻,都是在涂膜后才测试出来的,在涂膜前怎么让这两个数值随心意而改变,是比较难以做到的
他没必要把工作做的太过细致,主要是起到一个类似于抛砖引玉的效果,吸引其他科研工作者的关注。
要是能吸引到一些研究方向摇摆不定的课题组,投入有机光伏的怀抱就更好了。
毕竟,许秋一个人能耐再大,也不可能把有机光伏领域所有的活都干完,还是要靠其他工作者共同完成。
进入这个行业的人越多,这个领域发展的也就越快越好。
就像这次选择叠层器件顶电池材料时,自己课题组的材料就有些不够用了,需要找一些外援材料。
确定了文章格式后,许秋本来打算下载几篇最新“报告”格式的《科学》论文当做模板的。
结果发现下载不了,只能预览标题、文章作者、摘要等基础的信息,如果要阅读全文,或者下载文献全文pdf,就需要付费了。
他这才想到学校没有购买《科学》的电子版资源。
不过,很多期刊的电子版收费是有期限的。
也就是说文章发表后经过一定时间,会自动转换为开源文章,这个期限有的可能是一年,有的可能是两年。
因此,许秋找了找往期的《科学》论文,从中下载了几篇已经开源的“报告”格式论文,开始对照着制作模板。
大体上和之前acs、rsc、wiley旗下期刊的格式差不多,改变的主要是一些细节:
参考文献本身的引用格式也和其他期刊有所不同,年份需要加圆括号,放在页码的后面。
大致花费了一个小时,许秋终于完成了文章撰写前的准备工作。
接下来,就是构筑《科学》论文的大致框架。
三天后。
周三下午,许秋完成了这篇《科学》论文的大致框架。
正文中,他一共规划了三张图片。
第一张图片的主题是“基于a.5g标准光照条件下,对二终端法叠层有机太阳能电池器件理论效率的半经验分析”。
这张图片属于叠层器件文章中较为常规的配图,在平常单结器件的文章中并不多见。
具体细分为a、b、c、d四张小图。
其中,a图是核心。
许秋构建了一个三维立体坐标系,xyz三个坐标分别为:
x,外量子效率eqe,从65到85;
y,顶电池的光吸收边λo,近似于顶电池材料可以吸收光波长的最大值,从900到1200纳米;
z,器件的理论光电转换效率pce,从12到30。
此外,还有第四个变量,即每个子电池的能量损失eloss,分为0.4、0.5、0.6、0.7、0.8电子伏特五个档次。
同时,假定填充因子ff恒定为0.75。
经过计算,得到在不同子电池能量损失下,光电转换效率随外量子效率和顶电池的光吸收边变化的曲面图像。
因为能量损失有五个档次,所以对应的三维立体坐标系中就有五个曲面。
许秋为了表述直观,还给五个曲面染了色,从蓝到红分别表示光电转换效率逐渐增大。
这张图片看起来比较高端,但其实背后的计算过程并不复杂。
顶电池的光吸收边,可以通过公式换算出有效层材料的禁带宽度,禁带宽度再减去假定的能量损失,就得到了开路电压。
禁带宽度已知,外量子效率已知,可以通过积分计算得到短路电流密度。
最后,填充因子是给定的0.75。
三者相乘,就得到了最终的光电转换效率。
理论预测的结果还是比较美好的。
在光吸收边为1100纳米,外量子效率75,填充因子0.75,能量损失0.6电子伏特的条件下,有机光伏叠层器件的效率可以达到20!
然而,理想很丰满,现实有点短。
现实的情况是,每个值都比理想情况下差5左右。
比如,光吸收边实际上只有1000纳米,外量子效率只有70,填充因子只有0.70,能量损失是0.65电子伏特。
从而导致,现实里的结果差不多就是200.950.950.950.9516.3。
而现在都还做不到16.3呢。
不过经过许秋团队的努力,已经非常的接近这个数值了。
剩下的b、c、d三张图片,就是把三维坐标系之下立体的a图,变为二维坐标下的平面图。
也就是分别固定外量子效率、顶电池的光吸收边,以及每个子电池的能量损失,三个变量其中的一个,考察光电转换效率随另外两个变量变化的二维图谱。
其中,光电转换效率同样通过之前的蓝红颜色进行表示,并绘制出等效率线。
值得注意的是,在这些半经验分析图片中,许秋都把填充因子恒定为0.75。
一方面,是因为填充因子相对比较特殊。
它虽然是变量,但影响它的因素非常多,不是很好优化和界定,不像短路电流密度和开路电压,可以认为直接和材料禁带宽度相关。
理论上讲,填充因子主要受到太阳能电池器件本身的影响,最终得到的器件串联电阻越大,并联电阻越小,填充因子就越小。
但实际上,不论是串联电阻还是并联电阻,都是在涂膜后才测试出来的,在涂膜前怎么让这两个数值随心意而改变,是比较难以做到的
本章未完,点击下一页继续阅读